分享
中新经纬>>

书本网,1982安阳灵异事件,三晋聊天室,单职业神途手游网

2019-06-16 中新经纬

   

书本网很容易想象在亚历山大这样大型图书馆的大厅里找到具体的东西的挑战,而且事实是人类生成的数据的规模正在呈指数级增长。互联网上可用的数据量远远超过任何时代的任何单个图书馆的数量,Google的目标是将所有数据都编入索引。人类为索引创造了许多策略;在这里,我们研究最多产的数据结构,这恰好是一个索引结构:散列表。散列表中复杂性和优化的主要来源是散列冲突问题。当两个或更多个密钥产生相同的散列码时会发生冲突。考虑这个简单的哈希函数,其中密钥被假定为一个整数:什么是索引?散列表中复杂性和优化的主要来源是散列冲突问题。当两个或更多个密钥产生相同的散列码时会发生冲突。考虑这个简单的哈希函数,其中密钥被假定为一个整数:

1982安阳灵异事件数据库是索引编制的典型用例。数据库旨在保存大量信息,并且一般而言,我们希望高效地检索这些信息。搜索引擎的核心是建立互联网上可用信息的巨大索引。哈希表、二叉查找树、森林,B树和bloomfilters都是索引的形式。链接简单易行。我们不是在散列表的每个索引处存储单个项目,而是存储链接列表的头部指针。任何时候,一个项目通过我们的散列函数与一个已经填充的索引相冲突,我们将它添加为链表中的最后一个元素。查找不再是严格的恒定时间,因为我们必须遍历链表来查找任何特定项目。如果我们的散列函数产生很多冲突,我们将会有很长的链,并且由于更长的查找,哈希表的性能会随着时间的推移而降低。数据库是索引编制的典型用例。数据库旨在保存大量信息,并且一般而言,我们希望高效地检索这些信息。搜索引擎的核心是建立互联网上可用信息的巨大索引。哈希表、二叉查找树、森林,B树和bloomfilters都是索引的形式。散列函数接受一些输入值(例如一个数字或一些文本)并返回一个整数,我们称之为散列码或散列值。对于任何给定的输入,散列码总是相同的,这只是意味着散列函数必须是确定性的。

三晋聊天室多次移位散列与初始模数策略类似,但是避免了相对昂贵的取模操作,以支持非常快速的移位操作。MurmurHash和TabulationHashing是散列函数的多位移系列的强有力替代品。对这些散列函数进行基准测试包括检查它们的计算速度,生成的散列代码的分布以及它们处理不同类型数据(例如除整数以外的字符串和浮点数)的灵活性。有关哈希函数的基准测试套件的示例,请查看SMhasher。虽然任何唯一的整数在乘以13时都会产生唯一的结果,但由于鸽巢原理,最终得到的哈希码仍然会重复。鸽巢原理:如果n个物品放入m个容器中,nm,则至少一个容器必须包含多个物品。新的研究是重新审视一个领域基础的绝佳机会,而且作为索引的根本东西往往不是经常性的突破。本文作为哈希表的简介,简要介绍了什么使得它们变得快慢的原因,以及直观的机器学习概念,同时这些概念是如何应用于索引中的。散列函数接受一些输入值(例如一个数字或一些文本)并返回一个整数,我们称之为散列码或散列值。对于任何给定的输入,散列码总是相同的,这只是意味着散列函数必须是确定性的。

单职业神途手游网要将值插入散列表中,我们将数据的密钥发送给散列函数。散列函数返回一个整数(散列码),我们使用该整数(以数组的大小为模)作为我们数组中数值的存储索引。如果我们想从哈希表中取回值,我们只需重新计算密钥中的哈希代码并从数组中的该位置获取数据,这个位置是我们数据的物理地址。虽然任何唯一的整数在乘以13时都会产生唯一的结果,但由于鸽巢原理,最终得到的哈希码仍然会重复。鸽巢原理:如果n个物品放入m个容器中,nm,则至少一个容器必须包含多个物品。线性探测在概念上仍然很简单,但实施起来很麻烦。在线性探测中,散列表中的每个索引仍保留为单个元素。当索引i发生碰撞时,我们检查索引i+1是否为空,如果是,我们将数据存储在那里;如果i+1也有元素,我们检查i+2,然后i+3等等,直到找到一个空插槽。只要我们找到一个空插槽,我们插入值。再一次,查找可能不再是严格不变的时间;如果我们在一个索引中存在多个碰撞,那么在我们找到要找的项目之前,我们最终不得不搜索一系列长项目。更重要的是,每当我们发生碰撞时,我们都会增加后续碰撞的机会,因为(与链接不同)传入的项目最终会占据一个新的索引。初看起来,哈希表是基于被称为哈希函数的简单数据结构。散列函数的行为有很多不同并且被用于不同的目的,对于下面的部分,我们将只描述散列表中使用的散列函数,而不是加密散列函数、校验和或任何其他类型的散列函数。

(编辑:董文博)
中新经纬版权所有,未经书面授权,任何单位及个人不得转载、摘编以其它方式使用。
关注中新经纬微信公众号(微信搜索“中新经纬”或“jwview”),看更多精彩财经资讯。
关于我们  |   About us  |   联系我们  |   广告服务  |   法律声明  |   招聘信息  |   网站地图

本网站所刊载信息,不代表中新经纬观点。 刊用本网站稿件,务经书面授权。

未经授权禁止转载、摘编、复制及建立镜像,违者将依法追究法律责任。

[京ICP备17012796号-1]

违法和不良信息举报电话:18513525309 举报邮箱:zhongxinjingwei@chinanews.com.cn

Copyright ©2017-2019 jwview.com. All Rights Reserved


北京中新经闻信息科技有限公司